AggA is required for aggregation and increased biofilm formation of a hyper-aggregating mutant of Shewanella oneidensis MR-1.

نویسندگان

  • Wim De Windt
  • Haichun Gao
  • Wolfgang Krömer
  • Petra Van Damme
  • Jan Dick
  • Jan Mast
  • Nico Boon
  • Jizhong Zhou
  • Willy Verstraete
چکیده

Shewanella oneidensis COAG, a hyper-aggregating mutant of MR-1, was isolated from a rifampicin-challenged culture. Compared to the wild-type, COAG exhibited increased biofilm formation on glass carrier material. The role of surface-located proteins in the process of COAG auto-aggregation was confirmed by different proteolytic treatments of the aggregates. All of the tested proteolytic enzymes resulted in deflocculation within 3 h of incubation. In order to examine the altered expression of outer-membrane proteins in COAG, membrane-enriched cell preparations were analysed by proteomics and the protein pattern was compared to that of MR-1. From the proteomics results, it was hypothesized that the agglutination protein AggA, associated with the secretion of a putative RTX protein, was involved in the hyper-aggregating phenotype. These results were confirmed with a DNA microarray study of COAG versus MR-1. An insertional mutation in the S. oneidensis COAG aggA locus resulted in loss of the hyper-aggregating properties and the increased biofilm-forming capability. The insertional mutation resulted in strongly decreased attachment during the initial stage of biofilm formation. By complementing this mutation with the vector pCM62, expressing the aggA gene, this effect could be nullified and biofilm formation was restored to at least the level of the MR-1 wild-type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome Analysis of Early Surface-Associated Growth of Shewanella oneidensis MR-1

Bacterial biofilm formation starts with single cells attaching to a surface, however, little is known about the initial attachment steps and the adaptation to the surface-associated life style. Here, we describe a hydrodynamic system that allows easy harvest of cells at very early biofilm stages. Using the metal ion-reducing gammaproteobacterium Shewanella oneidensis MR-1 as a model organism, w...

متن کامل

PdeB, a cyclic Di-GMP-specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation.

Shewanella oneidensis MR-1, a gammaproteobacterium with respiratory versatility, forms biofilms on mineral surfaces through a process controlled by the cyclic dinucleotide messenger c-di-GMP. Cellular concentrations of c-di-GMP are maintained by proteins containing GGDEF and EAL domains, which encode diguanylate cyclases for c-di-GMP synthesis and phosphodiesterases for c-di-GMP hydrolysis, res...

متن کامل

Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1

The formation of biofilm-electrodes is crucial for microbial fuel cell current production because optimal performance is often associated with thick biofilms. However, the influence of the electrode structure and morphology on biofilm formation is only beginning to be investigated. This study provides insight on how changing the electrode morphology affects current production of a pure culture ...

متن کامل

Indirect modulation of the intracellular c-Di-GMP level in Shewanella oneidensis MR-1 by MxdA.

The GGDEF domain protein MxdA, which is important for biofilm formation in Shewanella oneidensis MR-1, was hypothesized to possess diguanylate cyclase activity. Here, we demonstrate that while MxdA controls the cellular level of c-di-GMP in S. oneidensis, it modulates the c-di-GMP pool indirectly.

متن کامل

Simultaneous Analysis of Physiological and Electrical Output Changes in an Operating Microbial Fuel Cell With <i>Shewanella oneidensis</i>

Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon sour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 152 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2006